博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HDOJ-1015 Safecracker 【DFS】
阅读量:6830 次
发布时间:2019-06-26

本文共 4015 字,大约阅读时间需要 13 分钟。

Safecracker

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 13669    Accepted Submission(s): 7150

Problem Description
=== Op tech briefing, 2002/11/02 06:42 CST === 
"The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein's secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, ..., Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary." 
v - w^2 + x^3 - y^4 + z^5 = target 
"For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn't exist then." 
=== Op tech directive, computer division, 2002/11/02 12:30 CST === 
"Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or 'no solution' if there is no correct combination. Use the exact format shown below."
 

 

Sample Input
1 ABCDEFGHIJKL
11700519 ZAYEXIWOVU
3072997 SOUGHT
1234567 THEQUICKFROG
0 END
 
Sample Output
LKEBA
YOXUZ
GHOST
no solution
 
代码:
#include 
#include
#include
#include
using namespace std;int len, tar, res[6];char s[13];bool vis[13],flag;bool cmp(char a, char b) { return a > b;}int pow(int n, int times) { int res = n; times--; while (times--) { res *= n; } return res;}void dfs(int n) { if (n == 5) { int sum = res[0] - pow(res[1], 2) + pow(res[2], 3) - pow(res[3], 4) + pow(res[4], 5); if (sum == tar) flag = true; return; } for (int i = 0; i < len; i++) { if (!vis[i] && !flag) { res[n] = s[i] - 'A' + 1; vis[i] = true; dfs(n + 1); vis[i] = false; } }}int main(void){ ios::sync_with_stdio(false); cin.tie(false); while (cin >> tar >> s) { if (tar == 0 && strcmp(s, "END") == 0) break; flag = false; len = strlen(s); memset(vis, false, sizeof(vis)); sort(s, s + len, cmp); dfs(0); if (flag) { for (int i = 0; i < 5; i++) printf("%c", res[i] + 'A' - 1); cout << endl; } else cout << "no solution" << '\n'; } return 0;}

转载于:https://www.cnblogs.com/ray-coding-in-rays/p/6407140.html

你可能感兴趣的文章
引用变量
查看>>
学习笔记PHP02、PHP的下载与安装
查看>>
vue项目中获取外部js,并使用其中方法
查看>>
使用 canvas 绘图
查看>>
Express 文档(Express生成器)
查看>>
【C++】 41_类型转换函数 (上)
查看>>
SEER见证人操作指南
查看>>
函数式编程中的组合子
查看>>
linux-node开发的部署方式--PM2
查看>>
JavaScript面向对象OOM 2(JavaScript 创建对象的工厂模式和构造函数模式)
查看>>
【ES6入门10】:Proxy和Reflect
查看>>
angular前后端分离部署
查看>>
Anaconda:安装或更新 Python 第三方包
查看>>
Java中线程的5种状态
查看>>
Node.js 指南(阻塞与非阻塞概述)
查看>>
Java 常用 API 学习
查看>>
微信小程序填坑清单
查看>>
递归问题(邓公数据结构1.4节笔记)
查看>>
“山竹”影响出来的多应用单点登录
查看>>
获取不到scrollTop的问题
查看>>